Park Transform
Description
The Park Transform block calculates the Park transform as
\begin{bmatrix} d\\ q\\ 0 \end{bmatrix} = \begin{bmatrix} \sin (\Theta ) & sin (\Theta - \frac{2\pi}{3})& sin (\Theta + \frac{2\pi}{3}) \\ \cos (\Theta ) & cos (\Theta - \frac{2\pi}{3})& cos (\Theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} a\\ b\\ c \end{bmatrix}
Library
Control > Transforms
Pins
Name | Description |
---|---|
A | A input signal |
B | B input signal |
C | C input signal |
Angle | Angle [Radian] |
D | D output signal |
Q | Q output signal |
Zero | 0 output signal |