Inverse Park Transform
Description
The Inverse Park Transform block calculates the inverse Park transform as
\begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} \sin (\Theta ) & cos (\Theta ) & 1 \\ sin (\Theta - \frac{2\pi}{3})& cos (\Theta - \frac{2\pi}{3}) & 1 \\ \\ sin (\Theta + \frac{2\pi}{3}) & cos (\Theta + \frac{2\pi}{3}) & 1\end{bmatrix} \cdot \begin{bmatrix} d\\ q\\ 0 \end{bmatrix}
Library
Control > Transforms
Pins
Name | Description |
---|---|
D | D input signal |
Q | Q input signal |
Zero | 0 input signal |
A | A output signal |
B | B output signal |
C | C output signal |
Angle | Angle input signal [Rad] |